1) Whenever possible, we strongly suggest the use of directional cloning strategies (i.e. cloning into a vector cut with two different restriction enzymes) over non-directional cloning approaches (cloning into single enzyme digested + phosphatase treated vector). Directional cloning strategies are straightforward, and are more efficient than non-directional approaches because a low background is achieved without phosphatase treatment (which can damage DNA ends). With the help of adaptors, it is almost always possible to come up with a great directional cloning strategy! Nevertheless, if you have to use a non-directional cloning strategy, the phosphatase should be carefully titrated to determine the optimal amount which prevents re-ligation of the vector with the least amount of damage to the vector DNA ends.

2) Strategies involving an end blunting step are significantly less efficient than those that don’t involve end blunting because 1) only a certain percentage of ends will end up flush and 2) DNA damage and/or losses can occur in the subsequent extraction and ethanol precipitation steps that are required before digesting the other end of the fragment (or vector). In conjunction with other inefficiencies in the same strategy (e.g. the use of 4 or 5 different fragments in a single ligation reaction), strategies involving an end blunting step can become intractable. End blunting strategies are almost completely avoidable by simply using an adapter which converts the two otherwise incompatible ends. Because the ends of adaptors are not damaged, their usage in cloning strategies typically yield very good results.

3) For multi-step cloning experiments, we always carry out the second step using mini prep DNA generated from the first cloning step (as opposed to preparing maxi prep DNA, which is time consuming). To date, we have found that mini prep DNA prepared by either the “Alkaline Lysis” method or by the “Boil Prep” method have been of high quality and are readily digested with any restriction enzyme necessary for the second step. For digestions with enzymes that require low salt conditions, however, the 70% Ethanol wash should be carried out adequately (i.e. 1. plenty of 70% Ethanol should be used, 2. after adding the 70% Ethanol, the tubes should be vortexed, and 3. as much residual ethanol should be removed as possible following centrifugation). The last issue that is germane to using mini prep DNA is that although we typically do not include an RNase digestion step in the mini prep procedure, we always add 2-3ul of high quality 10mg/ml RNase to the restriction digests.

4) We recommend using standard overnight ligation methods that you’re most happy with. However, many investigators have spoken highly of our “Low Melt Agarose In-Gel Ligation” protocol (available for download at www.ezclonesystems.com/Protocols.html). Since DNA fragments don’t have to be extracted from agarose, the Low Melt Agarose In-Gel Ligation protocol is fast.
addition, because the DNA fragments are not subjected to damaging chemical or mechanical stresses, cloning is efficient and high signal to noise ratios are typically achieved.

5) Other cloning tips, a simple guide to cloning strategies, and a plasmid subcloning troubleshooting guide can be downloaded on our web site - www.ezclonesystems.com/Protocols.html.

Use of Adaptors in Cloning Strategies

1) **Using one adaptor in a ligation reaction.** The optimal use of adaptors in cloning strategies involves the addition of only one adaptor in a single ligation reaction. In this approach, a strategy is developed in which one end of the insert is compatible with one end of the vector. The other end of the insert and vector can be made compatible using the appropriate adaptor. This strategy is highly efficient and because our adaptors are provided in an unphosphorylated format, the generation of adaptor multimers does not occur.

2) **Using two adaptors in a single ligation reaction.** Two adaptors can also be used in a single ligation reaction and we have had good success with this approach. However, this approach is a little less efficient than approaches using only one adaptor and it may be necessary to screen a few extra colonies. In addition, there are two issues that must be taken into consideration. First, because our adaptors are not phosphorylated, the ligation of an adaptor between two pieces of DNA generates a staggered nick. This staggered nick can come apart during the 70°C heating step which follows the ligation reaction in the low melt agarose ligation protocol. If there is only one staggered nick in a DNA molecule (i.e. if only one adaptor is used), the ends of the DNA molecule will come right back together when the temperature is brought back down. This uni-molecular reaction is very fast and in this setting, the cloning efficiency remains very high. However, if one fragment in the DNA molecule is flanked by two adaptors (i.e. with two staggered nicks), the insert will pop out during the heating step and the cloning will be very inefficient. This problem can be easily rectified, however, by the addition of 1ul of T4 polynucleotide kinase to the ligation reaction. T4 polynucleotide kinase works well under standard ligation conditions and this simple measure makes two adaptor cloning strategies work.

The second issue that should be taken into consideration before carrying out an experiment with two adaptors in a single ligation reaction is the possible consequence from cross-annealing of trace amounts of unannealed adaptors. If the two different adaptors used in a single cloning experiment contain exact internal homology, then it is possible that the vector will be linked together directly (i.e. without the insert) through trace amounts of a cross-annealed adaptor. Because this direct linkage of the two ends of the vector with a cross-annealed adaptor is a bimolecular reaction whereas the strategy of interest requires the linkage of 4 fragments (i.e. vector, insert, and two adaptors), even small amounts of cross-annealed adaptor can cause significant background. Therefore, prior to initiating a cloning experiment, the internal sequences of the two adaptors to be used should be compared to ensure that possible cross-annealing cannot generate a new adaptor with the capacity to directly link the vector together.
3) **Cloning with XhoI adaptors.** Through a number of different cloning experiences, we have discovered that unphosphorylated XhoI ends clone with low efficiency. This is not specific to the XhoI enzyme since unphosphorylated synthetic XhoI overhangs, or ends generated by the XhoI isoschizomer, PaeR7I, similarly clone with low efficiency. Instead, this appears to be a characteristic of the specific XhoI recognition sequence itself. As a result, this issue has implications for cloning with XhoI adaptors. As shown in figure 1, while an unphosphorylated HindIII/EcoRI adaptor clones with high efficiency into a HindIII/EcoRI cut vector, an unphosphorylated HindIII/XhoI adaptor clones poorly into the same vector cut with HindIII/XhoI. Importantly, this problem can be easily rectified by the simple addition of 1ul of T4 polynucleotide kinase to the ligation reaction (figure 1). This issue appears, to date, to be specific to XhoI (e.g. see figure 1) and we have not encountered this peculiarity with any other overhang. Other XhoI cloning strategies not involving adaptors are also affected by this property. For example, non-directional cloning experiments using phosphatase treated XhoI cut vector are inefficient because the phosphatase treated XhoI overhangs are dephosphorylated. In this case, however, this problem obviously cannot be alleviated by the addition of T4 polynucleotide kinase.
If you have any questions about these or any other issue, don’t hesitate to contact us at info@ezclonesystems.com or fill out a technical question form on our web site www.ezclonesystems.com. Good luck with your experiments!